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ABSTRACT:
Computer gene-finding programs have been quite successful at locating protein-coding
genes in both prokaryotic and eukaryotic genomes.  However these programs Ö which use
genomic features such as long open-reading-frames and codon signatures Ö are not
designed to identify non-coding RNA (ncRNA) genes.  As a result ncRNA-specific gene-

finders have been required.

The first successful attempts at computational ncRNA gene-finding focussed on ncRNAs
with well-characterized primary sequences and/or secondary structures, such as tRNAs or
methylation-guide snoRNAs.  In addition user-configurable RNA-motif search programs
were developed.   These programs search for RNAs by looking for user-specified
primary-sequence motifs and stable secondary-structures as indicated by increased
Watson-Crick base-pairing or low calculated free energies.  However, to date, these
RNA-motif searching programs have had only modest success at finding ncRNAs.

Recently, computational ncRNA gene-finders have been developed which show promise

of locating a much larger number of previously undetected ncRNAs.  Some of the most
successful are based on comparative sequence analysis between genomes of related
species.  Others exploit base-composition signatures of ncRNAs or use new methods for
RNA sequence alignment and secondary-structure prediction.  With these approaches,
numerous previously undetected ncRNAs have been predicted and subsequently
experimentally confirmed in species including Escherichia coli and the
hyperthermophiles Methanococcus jannaschii and Pyrococcus furiosus.

This chapter will review the strategies employed in the principal computational ncRNA
gene-finders.  We will compare the successes of the different approaches as well as their
limitations.  Finally, we will consider the impact that these new computational methods

are having on our picture of the world of ncRNAs.
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Introduction

With the sequencing of the human genome, the scientific community has completed the
first stage in compiling a complete “parts list” for the human body. The next phases –

identifying the genomic location of the “parts” (i.e. the genes), discovering their
functions, and determining how they are regulated are at a much less advanced stage.  For
the more familiar protein-coding genes there has been considerable progress in at least
finding their genomic locations – by experimental means, such as by the building of
cDNA libraries, as well as by computational methods.  This task is not yet complete as is
evidenced by the continuing debates as to the total number of human genes.  But there at
least appears to be a growing consensus of the approximate number of genes (at least to
within a factor of two or three) as well as their genomic locations.

In the world of ncRNA genes there is nothing resembling such a consensus yet.  Few
authors speculate as to the total number of ncRNA genes, even in small genomes – and

when they do, the estimates vary widely.  For example, when two groups predicted and
experimentally confirmed several novel ncRNAs in Escherichia coli in 2001, one group

wrote1 “we think it unlikely that there are many more than 50 sRNAs [i.e. small

ncRNAs] encoded by the E. coli chromosome” while the other group2 predicted that “a

significant number of our 275 candidate loci do indeed correspond to independent
ncRNA genes”.  And this is for the relatively compact E. coli genome whose complete
genome sequence had been already known for four years.

One does not need to look far for reasons for this lack of consensus.  Until recently,
genome-wide screening for ncRNAs was quite limited.  Traditional  EST-based methods
for RNA-screening were primarily designed to look for RNAs with lengths greater than

200 base pairs (bp) and with poly-A tails – i.e. for protein-coding mRNAs.   To some
extent the technology was deliberately skewed away from detecting ncRNAs because of
the (somewhat self-fulfilling) beliefs that ncRNAs were few in number and not of much
biological interest.

The last two years, however, have seen a significant increase of activity in identifying

and characterizing ncRNAs.  Experimental efforts3,4 have yielded dramatic results –

showing that ncRNAs are far more numerous and presumably have greater biological
significance than had been anticipated.  These results,  though clearly exciting, are
outside the scope of the present review; the reader is referred to the chapter  of this

volume by J.P. Bachellerie and J. Cavaille or the original papers.3,4  Until recently,

computational ncRNA searches have also had only limited success.  In this case the
reason has been less lack of interest, than the difficulty of developing effective gene-
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finders.  However, the last two years has also seen increasing success in ncRNA-gene
discovery by new kinds of computational approaches.

Because of these developments,  it seems timely to review the status of computational
ncRNA gene-finding. I will summarize the different strategies which have been

developed for this purpose– indicating the principal strengths  and limitations of each .
Particular attention will be paid to algorithms which have been developed within the last
two years.  In the next section we begin with a brief review of the basic strategies for
ncRNA computational gene-finding and a comparison with the simpler case of gene-
finding for protein-coding genes.  The following two sections consider gene-finders
targeting ncRNAs whose primary sequence and secondary structure are at least partially
known and conserved.  First we focus on customized programs that search for a single
RNA class.  Then we examine more general search programs that  can be reconfigured by
the user to target a variety of ncRNAs.  Next we looks at the more difficult task of
searching for ncRNAs when we have little or no idea of their consensus primary
sequence or secondary structure.  In the final section we summarize the  accomplishments

and limitations of these programs and speculate on their future development.

RNA sequence alignment,  RNA secondary-structure prediction and the identification of
RNA motifs in mRNA sequences will only be discussed to the extent that they have
impacted ncRNA gene-finding.  For further information on these topics the reader is

encouraged to consult recent articles and reviews 5-9 and references therein.

Gene-finding for protein-coding genes and ncRNAs

We begin with a brief review of the methods used for finding protein-coding genes.  In

the recent article “Gene-finding approaches in eukaryotes.”10  Stormo notes that there

are two main components to a gene-finder:  the type of information – or what to look for,
and the algorithm – or how to look for that information

Sequence information – signals, content statistics and similarity

Stormo groups sequence information into three basic classes: “signals”, “content
statistics” and similarity to known genes.  Sequence signals may include promoters,
terminators,  poly-A-addition and transcription-factor binding sites, splice sites, start and
stop codons and CpG islands.  In addition, if characteristic distances are known between
these individual signals, the distances themselves can serve as sequence signals.

Already here we begin to see the challenge of ncRNA gene-finding.  Except for splice

sites in the occasional multiple-exon ncRNA, only the usually weakly-conserved
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promoter and terminator signals (and possibly other poorly known transcription binding
sites) will be present in ncRNA genes.

Content statistics – i.e. non-random variations in base sequence – are also useful clues for
finding protein coding genes.  Especially in prokaryotes, open reading frame (ORF)

length alone can serve as a statistically significant gene marker.  In addition, codon
statistics can be exploited.  Species-specific variations in the selection among
synonymous codons can be utilized.  Since specific pairs of amino acids are often
adjacent in proteins,  constraints on more probable sequences of bases in a gene can be
found.  Moreover, since the third codon base is often degenerate, nonrandom
relationships in mutations in homologous genes can be exploited. None of these codon-
specific statistical variations are available in ncRNA gene-finding.

Finally, the rapid growth in the number of known protein sequences has made it
increasingly likely that a new protein-coding gene will have at least some homology with
an already-known protein.  As a result, sequence-similarity methods ( e.g. BLAST

searches11) are often effective in gene hunting for protein-coding genes.

Again the situation with ncRNAs is more challenging.  Far fewer ncRNA sequences are
available in the databases.  ncRNA sequences can be compared only at the nucleotide
level – not as translated amino acids – and, except for ribosomal RNAs (rRNAs), ncRNA

sequences are generally short.  Consequently, distinguishing weakly conserved genes
from random “hits” is more difficult when searching for ncRNAs than for protein-coding
genes.   Moreover, even in cases where there are large RNA families, sequence
conservation is often at the secondary-structure level, i.e. what is conserved are base
pairings rather than the individual base sequence.  As a result, except for rRNAs or RNAs
with well-conserved homologs in closely-related species, conventional sequence-
similarity methods have had limited success in ncRNA gene identification.  For other
RNAs, different methods have been required.

The one class of sequence signals that ncRNAs do have, that are not present in protein-
coding genes, are those that result from secondary-structure constraints.  For example,

many ncRNAs have specific base-pairings,  computable low-free-energy folding patterns,
unusual base-composition variations or characteristic cross-species patterns of mutations
occurring in complementary pairs.  As we will see, these secondary-structure signatures
have been central in the design of many ncRNA gene-finders.
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Algorithms

Nearly all of the current gene-finders for protein-coding-genes, such as Genscan,12

Genie13 and Glimmer,14 use probabilistic algorithms – typically implementing some

form of a Hidden Markov Model (HMM).15  A central feature of these algorithms is a

dynamic-programming protocol which is used to “train” the model – i.e. to maximize the
selectivity between a training-set of verified genes and a negative training-set of similar
sequences which do not represent genes.

However, HMMs are not able to model sequences with secondary structure and

consequently are ill-suited for ncRNA gene-modeling.  Moreover, as we shall see, fully
probabilistic algorithms that can model secondary structure tend to have long CPU
execution times and to require a larger training set than may be available.  Consequently
we will see a variety of deterministic and partially probabilistic algorithms – such as

weight-matrix approaches15,16 –  in addition to the fully probabilistic gene-finders.  In

addition, with ncRNAs there is often only limited training data.  Consequently, choices

commonly must be made between training with only a small number of sequences for the
specific ncRNA gene being sought, or using a larger number of training sequences, that
however include a wider assortment of ncRNA genes.

A final issue in ncRNA-gene searches is determining precisely where to search.  Should
the gene-finding program work equally well on all genomes or only on those with
specific properties (e.g. ones with high AT content )?  Should the program scan the entire
genome or only specific genomic regions? These considerations are generally irrelevant
in conventional gene-finders. Gene-finders for protein-coding-genes usually search the
entire genome, except for regions of multiply-repeated subsequences.   And, aside from
the fact that gene-finders are typically designed for either prokaryotic genomes or

eukaryotic ones, protein-coding gene-finders generally work comparably well on most
genomes.  On the other hand, because of the often subtler signals in ncRNA gene
searches, it is sometimes advantageous to restrict such searches either to only a portion of
the genome (typically to the regions that do not overlap any known protein-coding gene)
or to only a limited range of genomes with specific characteristics.

Custom-designed ncRNA genefinders

We begin with a discussion with programs that are custom-designed to find a single type
of ncRNA.  Among these the most successful have been gene-finders for the tRNAs and
the methylation guide snoRNAs.
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tRNA gene-finders

The earliest ncRNA gene-finders were custom programs designed to search for tRNAs.
During the 1980’s and early 1990’s, increasingly detailed models of tRNA sequence and

secondary structure were developed, 17-19 culminating in tRNAscan by Fichant and

Burks20 and the Pol3Scan linear search algorithm of Pavesi et al. 21  tRNAscan had a

sensitivity (i.e. a “true positive” rate) of  95.1% with false positive rate of 0.37 /

megabasepair(Mbp).22  Pol3scan had a sensitivity of 98.6% with false positive rate of

0.23 / Mbp.22  Both programs used weight matrices taken from the sequences of the

known tRNA genes, though the motifs each program looked for were somewhat different.
Pol3scan searched only for primary sequence signals – tRNA sequence motifs,
transcriptional control elements and terminator sequences from eukaryotic tRNAs – while
tRNAscan used tRNA sequence motifs combined with secondary structure patterns.

Although the sensitivities and  specificities of tRNAscan and Pol3scan were impressive,
they were not yet fully satisfactory for genomic scanning. For example,  a false positive
rate of  0.37 / Mbp would imply approximately 1100 false positives in the 3,000 MB

human genome.  Interestingly, the 7 known tRNAs missed by Pol3scan were (with a

single exception) different from the 19 tRNAs missed by tRNAscan.21  Considering that

the two programs looked for somewhat different motifs, this result is not so surprising.
But it did suggest that a more powerful gene-finder might be possible if the two programs
were combined.

The next improvement in tRNA searching came with the introduction of the COVE

program23 in 1994.  COVE is a reconfigurable gene-finder and will therefore be covered

in the following section.  However, COVE’s principal success to date has been in
searching for tRNAs, where it achieved  a sensitivity of 99.8% with an estimated false

positive rate less than  2 / gigabase22  Unfortunately, this sensitivity came at a cost;

COVE’s algorithm  could only scan at approximately 20 base pairs / sec22 –  far too slow

for routine genomic screening .

Consequently the next efforts at tRNA searching involved developing faster algorithms.

FASTRNAscan24 ran faster than tRNAscan or Pol3scan and far faster than COVE.

However, its sensitivity and specificity were worse than that of COVE.  tRNAScan-SE25

on the other hand managed to match the sensitivity and specificity of COVE while
decreasing COVE’s  running time by a factor of 15,000.  tRNAScan-SE accomplished
this by first running  tRNAscan and Pol3scan with more permissive “cutoff values” – in
order to rapidly scan a genome for candidate hits.  Subsequently the candidate-gene  list
was passed to COVE where the potential hits were subjected  to COVE’s stringent

testing.  Since COVE only had to test a relatively small proportion of the original
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candidate sequence ( 1 – 10%), its slow execution speed was not a problem.  tRNAScan-
SE is now used routinely to rapidly screen newly sequenced genomes for tRNA genes,
achieving sensitivities of 99.5% with an expected  false positive rate of only 0.07 /

gigabase.22

Unfortunately, it has not generally been possible to match the success of tRNAScan-SE
in searches for other classes of ncRNAs.  Probabilistic gene-finders like COVE generally
work best when the RNA being sought is highly conserved in primary and secondary
structure, and when sequences in multiple species are known and available for use in
training.  Consequently, tRNAs were ideal targets.  Over 1000 tRNA sequences from

multiple species have been in the databases26 for many years.  However, for many other

types of ncRNAs only a few examples are known and there is little data available for
model training.

Searches for methylation guide snoRNAs

One group of RNAs for which sufficient data has become available to develop successful

custom gene-finders are the methylation-guide snoRNAs. An early attempt at snoRNA

gene-finding used a combination of standard sequence pattern –recognition programs.27

This approach however generates a large number of false-positive “hits”.  Consequently,
the snoRNA gene search-space was limited to vertebrate introns, since previously
identified snoRNAs had been found in these sequences.  This approach resulted in the

identification of 9 previously unknown methylation-guide snoRNAs.27

However, performing a genome-wide search for snoRNAs required a custom-designed,

probabilistic search program.  Such a program28 – known as snoscan - was able to

predict 22 previously undetected S. cerevisiae methylation-guide snoRNAs which were
subsequently experimentally confirmed.  For 12 of the 22 snoRNAs, the associated
methylation site had previously not been known.  Snoscan also facilitated identification
of snoRNAs throughout the domain of Archaea, after a seed training set was

biochemically isolated from a single species.29

Despite its successes,  snoscan has its limitations.  If the snoRNA methylation site is
unknown – and hence can not be used as part of the snoRNA signature – the S/N ratio of
the program decreases (i.e. the number of false positive increase.) Consequently snoscan
has been difficult to apply to larger genomes with unknown  methylation sites.  In
addition, snoscan is only designed to detect methylation-guide snoRNAs,  Locating the
less-well-conserved pseudouridylation-guide snoRNAs by computational means has not
been accomplished to date.
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Customized  gene-finders for other classes of ncRNAs

Beyond tRNAs and methylation guide snoRNAs, there are few examples  of custom
ncRNA gene-finders which have successfully identified new RNA genes. Dandekar and
Sibbald predicted several trans-splicing RNAs in a search of the EMBL database of

which some candidates were later confirmed experimentally.30  Lisacek  et al31

developed a weight-matrix-based program which successfully found 132 of 143 known
group I catalytic RNAs; however, no new RNAs were predicted with this program.  In
addition, very recently,  custom programs for locating microRNAs [C. Burge, personal

communication] and tmRNAs32 have been developed, with promising initial results

Reconfigurable ncRNA gene-finders.

In addition to the customized RNA gene-finders, user-configurable programs to search

for RNA motifs have been developed since the late 1980’s.33,34  With these programs,

the user specifies either a “descriptor file”, a set of “production rules” or else a multiple-
sequence alignment to describe the class of RNAs being searched for.

In programs using the descriptor-file approach, the descriptors typically include primary-
sequence motifs, secondary-structure patterns, and gap-lengths between motifs .  In most
programs of this class, the user can also set additional search parameters such as the
allowed number of mismatches in a motif or whether G-U base pairs should be accepted

as matches in secondary-structure stems.  A typical descriptor file is shown in figure 1.

In addition to the programs of refs 33-34, descriptor-file RNA search programs include

RNAMOT,35,36 RNABOB,37  Overseer,38 Patscan/Patsearch,39 Palingol,40 and

RNAMOTIF.41   With the exception of the recently introduced RNAMOTIF, these

programs are all deterministic and consequently have limitations when searching for
sequence motifs that are weakly conserved.  RNAMOTIF, which is based on the earlier
RNAMOT program, is an attempt to introduce the elements of probabilistic searching
while maintaining the user-programmable descriptor-file interface of the earlier
programs.  Specifically, RNAMOTIF introduces user-supplied “score functions” that can
incorporate statistical, thermodynamic or other information into the motif-evaluation

procedure.   Recently, RNAMOTIF has successfully searched for signal recognition
protein (SRP) RNAs using an empirical scoring function based on observed biases in
nucleotide and base-pair frequencies and loop lengths.  Using this scoring function,
RNAMOTIF was able to locate SRP RNAs in seven previously unannotated prokaryotic

genomes.41

A different approach to user-configurability was taken by Searls and collaborators who
introduced the concepts of “context-free-grammars”(CFGs) from the field of



9

computational linguistics to ncRNA gene-finding.  CFGs are elegant models of ncRNA
sequence and secondary-structure  in which the descriptor file is replaced with a set of
production rules (see figure 1).  The production rules describe how to generate all the
allowed structures of the model (e.g. the class of RNA structures).  In this sense they are
very similar to the production rules of “regular expressions” from computer science – or

their probabilistic counterpart, Hidden Markov Models. However , CFGs can model more
complex structures than regular expressions and as a result are able to model RNA
secondary structure in addition to primary sequence.  For additional details on CFGs in

RNA structure modeling, the reader is referred to the original articles42,43 and earlier

reviews.15  In practice, the CFG models did not predict any new ncRNAs; their

importance has been more in laying the foundation for the stochastic-context free-
grammar (SCFG) models that followed.

The third class of user-configurable RNA-motif and RNA-gene-finders rely on the input
of sequence alignments of known RNAs to train the gene-finder, rather than using either
descriptor-files or grammar production rules.  The idea is that rather than have the user

manually extract the critical features in a family of RNA sequences, the program will do
it automatically.

The first examples of this class of programs were the stochastic context free grammars

COVE by  Eddy and Durbin23 and the SCFG program of Sakakibara et al. 44   These

programs are fully probabilistic extensions of the CFG models of RNAs. .  The
Sakakibara program requires a structurally-annotated, multiple-sequence alignment for
training.  COVE, on the other hand, can – with relatively “ideal” training data  – be
trained in three different ways: using a multiple-sequence alignment – with or without

structural annotation – or just with a set of unaligned sequences.45. However, in more

realistic situations, a structurally-annotated, multiple-sequence alignment for training is

also important for COVE to perform well.46

The SCFGs have demonstrated advantages over their deterministic predecessors in cases
where training data with many aligned sequences were available –e.g. for tRNAs.
However, in most cases, such extensive training data is not available.  In addition,

SCFG’s cannot describe non-planar RNA structures such as pseudoknots nor – at least in
their current implementations - can they model non-exponential gap-length distributions.
In addition. They are also complex; users of SCFG approaches typically face steep
learning curves.  Finally, and perhaps most importantly, the use of stochastic context free
grammars has been limited by their being computationally expensive.   Typical SCFG

memory costs are of O(N3) and time costs are of  O(N4) for a sequence of length N.46

The speed limitation can sometimes be addressed by the use of a fast preprocessor, as
was done by tRNAscan-SE.  And recent work  indicates that the memory demands of
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SCFGs may also be decreased.46. However, to date, these technical limitations have

limited the widespread application of SCFGs in ncRNA gene-finding.

To address some of the limitations of the SCFG’s, a probabilistic model called ERPIN47

was recently introduced.  ERPIN uses weight matrices rather than a SCFG to

probabilistically model an RNA sequence alignment.  ERPIN requires a secondary-
structure annotation along with a trusted multiple-sequence alignment for training.
When such an annotated multiple-sequence alignment is available – e.g. with tRNAs –
ERPIN performs well.  In contrast to the SCFG’s, ERPIN can handle RNA pseudoknots

and its “reasonable run times”47 are listed among its advantages compared to SCFGs.

On the other hand,  ERPIN has only limited capability for handling complex helix-stem
“indels”  – i.e. insertion and deletions of large structured regions within a base-paired
stem. Consequently, ERPIN would be expected to have more difficulty than the SCFG’s
in handling RNAs with highly variable secondary structures such as Rnase-P RNA.

In any case, ERPIN as well as the SCFGs require multiple-sequence alignments –
generally with structural annotations  – for training. As a result, the future success of
these methods will depend on improvements in the accuracy of RNA sequence alignment

and RNA structure prediction.   Within the last year, programs such as Dynalign7 and

Foldalign8  have shown that when RNA sequence alignment and RNA structure

prediction are performed simultaneously, the results can be significantly improved

compared to when the two operations are performed separately.  Foldalign has been used
to create sequence alignments for use by COVE in mRNA motif-finding, with

encouraging results.48  In principal, this strategy of supplying more accurate training-

alignments to probabilistic RNA motif-finders should improve the results of ncRNA
gene-finding as well.

Although the idea of a user-configurable ncRNA gene-finder is appealing, these
programs have had only limited success at actually finding new ncRNAs to date.  Apart
from tRNA searching and the application of RNAMOTIF to SRP RNA searches, there
have been few confirmed ncRNA-gene predictions by programs of this class. Gaspin et al
identified and experimentally confirmed 46 previously unknown  Pyrococcus

methylation-guide snoRNAs using the program Palingol along with genomic sequence

comparisons49  Another example was the identification of hammerhead ribozyme RNAs

in schistosome satellite DNA by Cedergren and collaborators using RNAMOT.50  In

addition,  Cedergren’s group predicted other ncRNAs by running RNAMOT against the
genomic databases – however, their papers do not indicate whether any of these putative

ncRNAs were subsequently experimentally  confirmed.51,52  In fairness, it should be

noted that most of the user-configurable RNA-motif finders were not designed primarily
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to be ncRNA gene-finders.  Instead, their main objective has been to detect  sequence-
motifs and secondary-structure motifs in mRNA, at which they have had more

success.53,54

de novo ncRNA gene-finding – searching for genes without a priori knowledge of
sequence or structure

As we have seen, when sufficient training data is available, computational searches for
well-characterized ncRNAs  can be quite successful.  But what if one wants to search for
RNAs for which there are few examples or none at all?  At first this sounds impossible.

How can one search for RNAs without knowledge of their primary sequence motifs or
secondary structure?  Yet it is possible to design such searches and, remarkably, in the
last year such methods have succeeded in finding many new ncRNAs.

Algorithms to find completely unknown RNAs have fallen into three classes.  The first
group are based on finding stable secondary structures.  Others exploit variations in
ncRNA base-composition relative to the genomic background .  Finally, some use
genomic sequence comparisons among related species.

Structure- based  de-novo gene-finding

The first de novo  methods  were  based on secondary-structure  computations.  These

methods exploited the observation that calculated thermodynamic free energies of
ncRNAs are generally lower than those of random sequences with the same base
composition.  Hence the gene-finding program would segment the genome into fragments
of the typical ncRNA-length (e.g. 100 or 200 base pairs) and compare the computed
minimum free energies of the sequence fragments with randomized versions of the same
sequences.   If the calculated free energy  of the sequence was significantly less than that
of the randomly shuffled sequences, then one would predict the presence of an ncRNA

gene.55,56  One example of this approach was the program of Chen et al that searched

for RNA pseudoknots.57 Alternately one could look for genomic sequence fragments

capable of being folded into specific types of RNA secondary structures in the spirit of

RNA-folding programs such as Mfold58 and ViennaRNA.59   Looking for folding

patterns – rather than computing free energies – had the advantage of generally being

faster, while producing  similar predictions.60  Unfortunately, these methods have not led

to the discovery of new ncRNAs.  Moreover, computer experiments  with known targets
and randomized sequences suggested that secondary-structure computations by

themselves would never be successful for de novo ncRNA gene-finding.60
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Gene-finders using base-composition variations

The same paper60 which demonstrated the limitations of using secondary-structure alone

to search for ncRNAs, also suggested that (G+C)%,  i.e. the percent of G and C bases in a
sequence, might serve as a signature for the presence of an ncRNA gene.  Subsequently,

three groups61-63 have successfully applied this idea to de novo gene-finding.  Klein et

al61  and Schattner 62 searched for ncRNAs in thermophillic archaebacteria with high

(A+T)% genomic backgrounds.  Klein et al combined (G+C)%  with the QRNA

comparative genomics method61  described below to search for ncRNAs in M.

jannaschii and P. furiosus.  Schattner examined variations in multiple base-composition
statistics including (G+C)% , (G-C)% difference and dinucleotide frequency variations.
Among these statistics (G+C)%  and the frequency in the ‘CpG’ dinucleotide were
observed to vary significantly between ncRNAs and the genome in the thermophile M.

jannaschii.  (Although the increased occurrence of CpG dinucleotides in M. jannaschii

ncRNAs is reminiscent of the CpG islands of mammalian protein-coding-gene regions,
there is currently no evidence indicating that they are in any way  related.) Predictions
from the two investigations in M. jannaschii were similar, though not identical.  Northern

blots performed by Klein61 showed that 4 of the 6 M. jannaschii ncRNAs predicted by

both approaches are in fact expressed. In addition, Klein et. al. predicted and
experimentally verified 7 new ncRNAs in P. furiosus.

One of the conclusions of these two groups - that base-composition oriented gene-finding

is primarily useful only with thermophiles - is somewhat discouraging,  Nevertheless, the
authors did suggest ways that the method may have wider applicability.  Klein et al noted
that ncRNAs may be found in non-thermophiles by first finding their homologs in a
thermophillic species.  Schattner observed that even in some non-thermophiles, such as
Caenorhabditis elegans, significant base-composition variations between ncRNAs and
the background exist.  Although  in C. elegans these variations are not sufficient to serve
as an de novo gene-finder by themselves (as seen in figure 2), they may still be useful as
a supplementary component of a gene-finder that also includes secondary-structure or
primary-sequence motifs.

RNAGenie, developed by Carter et al,63 incorporates base-composition variations –

along with primary sequence motifs and free-energy calculations - in a “neural network”
ncRNA gene-finder.   Their work is particularly interesting since it was applied to E. coli

and other non-thermophiles that might not be expected to be good candidates for a
(G+C)% based gene-finder.   Using their method, Carter et al find 370 putative novel
ncRNAs in E. coli.  Although no experimental testing of these candidate RNAs was
performed in their original work, 13 of their predictions have been subsequently

confirmed with Northern analysis.63  In addition,, Carter et al listed 10 previously known
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ncRNAs which had not been in their training set, seven of which were successfully found
by RNAGenie.  However,  until a systematic verification of their predictions is
performed, it will be unclear how many of their remaining 350 candidates are true
ncRNAs and how many are simply false positives.

Gene-finding using comparative genomics

Perhaps the most exciting development in the area of de novo ncRNA gene-finding has

come from three recent  studies based on comparative genomics.1,2,66 Each of these

methods looks for regions of homology among two or more related genomes.  The idea is
that regions of biological importance – e.g. loci of ncRNAs – will be more conserved

than  regions that do not have any genes.  So far these algorithms have been applied only
to intergenic regions to avoid the large number of false positives likely to arise from
homologous protein-coding genes.

In the method of Wasserman et al,1  local cross-species sequence conservation was the

only bioinformatic signature used.  Since this resulted in a large number of putative

“hits”, Wasserman et al complemented their computational search with an experimental
screen using micro-arrays.   When applied to the E. coli genome (with comparisons to 5
related bacterial genomes), their method predicted 60 new ncRNAs of which 18 have

been experimentally confirmed.65

In contrast, Argaman et al66 combined the search for conserved  sequences among

bacterial genomes with a computational screen for nearby promoter and terminator
sequence motifs.  Since Argaman et al were searching in E. coli – where promoter and
terminator sequence motifs are known and relatively well conserved – the method
worked well.  They made 24 predictions of novel ncRNAs of which 14 have been

experimentally verified.65  However, their method is difficult to apply to non-bacterial

genomes for which promoter and terminator sequences are much less well conserved, or
even to other bacterial genomes that have different promoter signatures.

Probably the most promising of the comparative approaches is the QRNA program of

Rivas and Eddy.2,64  Their method not only searches for regions of cross-species

homology, but also examines the nature of the mismatches that occur among the aligned
sequences.  The key idea,  illustrated in figure 3, is that if a region contains a protein-
coding gene, then mismatches between homologous sequences should frequently
correspond to a synonymous codon or a codon for a closely related amino acid.  In
contrast, if the region contains an ncRNA, then a higher percentage of substitutions
should occur in complementary pairs such that the underlying ncRNA secondary

structure is preserved despite the substitutions of the individual bases.  Finally, if the
region does not contain any gene, then the distribution of interspecies mismatches should
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correspond to their background base frequencies.  The appeal of this approach is that it
should apply to any genome for which related sequenced genomes are available.
Knowledge of promoter and terminator consensus sequences is not required.  And since
QRNA uses comparative information specific to RNA secondary-structure (in contrast to
the methods of ref. 1 or ref. 66), it may be able to find ncRNAs while searching an entire

genome - and not just the intergenic regions.  QRNA has already been applied

successfully to the E. coli, 2 M. jannaschii and P. furiosus61 genomes and shows promise

to being applicable to a wide range of additional genomes.  Of course, since QRNA relies
on secondary-structure signatures, it will have difficulty finding ncRNAs that have little
or no secondary structure.

  Current status and future prospects for computational ncRNA gene-finding

So just how good are the current computational gene-finders?    And what are the
prospects for improvement in the near future?  As we have seen, in a few cases  - such as
tRNAs or methylation-guide snoRNAs – current programs work very well.  However, in
most cases the accomplishments have been more modest.  For example, from our
knowledge of the number of pseudouridylation sites in eukaryotic rRNA alone, we can be
almost certain that there are dozens to hundreds, as yet unidentified, snoRNAs in
essentially all eukaryotic genomes.  For other classes of RNAs where we have no reliable
information as to the total number of RNAs, we simply don’t know whether the current

programs are performing well or not.  For example, were the 31 novel ncRNAs recently

found in E coli 65 almost all of the ncRNAs that  had previously escaped detection?  Or

are they only the “tip of the iceberg”?  Estimates of the true number of E coli ncRNAs
vary, but in reality the performance of current ncRNA gene-finders is still unknown.

In traditional machine-learning analysis, algorithm performance is generally evaluated by

dividing the known examples into “training” and “testing” data sets.  The program under
evaluation is trained solely using the training data set and assessed with the testing data
set.  However, when few examples are known (the usual situation for ncRNA gene-
finders), a modified procedure, “jack-knife testing” is typically used instead.  In jack-
knife testing, a single known example is sequentially removed from the training set and
the program is trained with the remaining data.  The program is then tested on its ability
to find the omitted example.   While eliminating the pitfalls of using the same data for
training and testing, jack-knife testing still assumes that the known examples adequately
represent the range of targets remaining to be found; otherwise, conclusions from jack-

knife testing may be misleading.  For example, Carter et al 63 demonstrated using jack-

knife testing  that RNAGenie had between 90.9% to 93.8% sensitivity in E coli

depending on the threshold parameter they chose ( see table 2 of ref. 63).  On the other
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hand, of the 31 novel ncRNAs found by refs. 1,2, and 66,  only 13 were predicted by

RNAGenie63 suggesting a lower sensitivity at finding new ncRNAs.

These observations remind us that only experimental testing can confirm or refute the
predictions of a computational gene-finder.  Yet even when one uses experimental
verification (e.g. Northern analysis or micro-array data) to assess computational gene-
finders, one must proceed with caution.  A negative result may simply indicate that the
ncRNA isn’t expressed under the specific cellular environment or the specific tissue type
being assayed. On the other hand,  even a positive identification on a Northern or micro-
array may merely represent the presence of some other stable RNA such as an mRNA

leader sequence. Of course, these experimental issues are not insurmountable and can be

addressed by careful testing over multiple tissue types and cell environments .3,4

However, they do remind us that even  experimental results – when based on limited data
– may not be sufficient to assess the performance of a computational gene-finder.

Despite these caveats,  we may speculate a little on the future of ncRNA gene-finding.

My belief is that all three classes of gene-finders  - the customized gene-finders, the user-
configurable motif-finders and the de novo programs – will continue to be important and
will be used in a synergistic manner in the next few years.  As additional genomes are
sequenced,  the comparative genomics gene-finders will be able to generate additional
candidate ncRNAs.  These candidates, along with those identified by the experimental

screens,3,4 will produce additional examples from the known classes of ncRNAs.  These

new examples will provide additional training data for the custom gene-finders, thereby
improving their performance.  Meanwhile better RNA-sequence-alignment and structure
prediction programs should generate improved models of previously unknown classes of
RNAs which can, in turn, be input into the reconfigurable RNA-motif-finders.

So, in the end, how many ncRNAs can we expect to find?  One tantalizing hint may have

come form the recent publication 67  of human-mouse sequence comparisons.  This work

showed that 66% of the strongly conserved, syntenic regions between mouse
chromosome 16 and the corresponding human chromosomes do not overlap protein-
coding exons.  Intriguingly, the average length of these conserved syntenic regions is 189

base pairs67.  How many of them encode ncRNA genes?  No one knows.  However, with

the computational and experimental screening methods already available, the answer
should become apparent soon.  And if even a fraction do prove to be ncRNAs – as

suggested by the recent screens in E coli1,2,66 and other organisms3,4 –  then locating all

these new ncRNAs should provide a window into an exciting modern RNA world far
richer than many had previously believed it to be.
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FIGURE CAPTIONS:

Figure 1: A simple hypothetical double stem loop as described by a descriptor file and a
Context Free Grammar.
Figure 1A graphical representation of secondary structure. N indicates any one of the four

bases.  N' is the complement of N.
Figure 1B Description of structure using the RNAMOT file descriptor language.
Figure 1C Structure description using production rules of a Context-Free Grammar.
Capital letters indicate CFG "Non-terminals".  Note: The production rules for the second
stem loop are omitted for brevity. For more details on the file descriptor languages see
refs. 35-40.  For more details on CFGs see ref 43 and chapter 10 of ref. 15

Figure 2: Separation of RNA's and genomic background using G+C%.  Vertical axes
indicate estimated relative number of 100 bp subsequences.  Note that peak of curve for
number of genomic sequences is truncated.  RNA estimate assumes ratio of protein
coding genes to ncRNA genes is approximately equal to that in S. cerevisae. Graphs are

shown as normally distributed for purpose of illustration - actual distribution of G+C%
may vary.
Figure 2A.   M. jannaschii RNA and genome G+C% distributions are separated enough
to enable discrimination between RNA and background populations
Figure 2B. C. elegans chromosome X. Although C. elegans ncRNA and genomic G+C%
population means are significantly different, ncRNA distribution can not be distinguished
from that of the background by G+C% alone.
(modified from ref 62 by permission, copyright 2002 Oxford University Press.)

Figure 3: QRNA sequence alignment for protein-coding, structural-RNA-coding and non-
coding sequences. Three pairwise alignments of identical composition with identical base
substitutions can be classified by distinctive patterns of mutation caused by different
selective constraints. The figure indicates how each alignment is scored according to the
model that best fits the pattern of mutations: one position at a time for the position-
independent model, one codon at a time for the protein-coding model (integrated overall
six possible reading frames) and as a combination of base paired positions and single
positions for RNA (integrated over all possible secondary structures).  For more details

see ref. 64.
(modified from ref 64 by permission, copyright 2001 Sean R. Eddy.)
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Figure 1: A simple hypothetical double stem loop as described by a descriptor file and a
Context Free Grammar
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Figure 2: Separation of RNA's and genomic background using G+C%.
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Figure 3: QRNA sequence alignment for protein-coding, structural-RNA-coding and non-
coding sequences


